Close
  Indian J Med Microbiol
 

Figure 3. Chronological order of retinal cell genesis. Retinal neurogenesis (multiplication and differentiation) begins before embryonic day 10 and persists until postnatal day 11 in the mouse. Retinal cells differentiate largely in two overlapping waves: In the first wave, cone photoreceptors (cones), horizontal cells (H.C.), retinal ganglion cells (G.C.), and amacrine cells are produced; in the second wave, bipolar cells and Müller (glial) cells are produced. Rod photoreceptors (rods) are produced throughout these waves. Note there is considerable overlap during the production of various retinal cell types. The size of each wave represents the approximate proportion of each cell type in the mature retina. Modified from Young[28] and Marquardt and Gruss,[106] copyright licenses obtained.

Figure 3. Chronological order of retinal cell genesis. Retinal neurogenesis (multiplication and differentiation) begins before embryonic day 10 and persists until postnatal day 11 in the mouse. Retinal cells differentiate largely in two overlapping waves: In the first wave, cone photoreceptors (cones), horizontal cells (H.C.), retinal ganglion cells (G.C.), and amacrine cells are produced; in the second wave, bipolar cells and Müller (glial) cells are produced. Rod photoreceptors (rods) are produced throughout these waves. Note there is considerable overlap during the production of various retinal cell types. The size of each wave represents the approximate proportion of each cell type in the mature retina. Modified from Young<sup>[28]</sup> and Marquardt and Gruss,<sup>[106]</sup> copyright licenses obtained.